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Optical bistability and multistability via
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We investigate the optical bistability and multistability behaviors in a closed three-level Λ-type atomic
system. By adding a sideband on either hand of the transitions which are originally coupled by a coherent
control field and a coherent probe field to disturb the two-photon resonance, bistability occurs due to
two-channel interference. Increasing the sideband Rabi frequency leads to the switching from bistability to
tristability. When the sideband simultaneously couples with both hands, we can easily obtain quadrasta-
bility.
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Quantum coherence and interference in multi-level
atomic systems can lead to many interesting optical
phenomena[1−5] such as lasing without population in-
version, enhancement of index, electromagnetically in-
duced transparency (EIT), subluminal and superluminal
light. As a role of atomic coherence and interference,
optical bistability has been extensively studied both
experimentally and theoretically in the past years[6,7].
Harshawardhan et al. demonstrated the application of
EIT and quantum interference effects in the cooperative
phenomena of optical bistability[8]. Phase fluctuation
of the driving field can significantly influence the op-
tical properties of driven atomic systems[9]. Utilizing
narrow nonabsorption resonances which occurs in a co-
herently driven three-level system, a bistable behavior
can be observed[10]. Joshi et al. have experimentally
demonstrated that the enhanced nonlinearity induced by
atomic coherence effects in Λ-type atomic systems can
produce the optical bistability and multistability[11,12].
Due to the spontaneously generated coherence, the op-
tical bistability can be realized in a nearly equispaced
ladder-type three-level atomic system[13]. Moreover, Hu
et al. used trichromatic electromagnetic-field to couple
with one transition of the Λ-type atom and thereby in-
duced bistability and multistability[14].

In recent years, Harada et al. demonstrated experi-
mentally that stimulated Raman scattering can disrupt
EIT[15]. The disruption of EIT is important to un-
derstand because it may degrade the performance of
EIT-based applications, such as optical memories and
buffers, and magnetometers. Novikava et al. reported a
dynamic hysteresis of the Raman scattered optical field
in response to changes of the driving laser field intensity
and frequency that may be described as a dynamic form
of optical bistability[16]. Inspired by these studies, in
this letter, we add a sideband field on either hand of the
atomic transitions to disrupt EIT and obtain bistability
due to the two-Raman-channel interference effect. Here

we begin with a two-photon resonance system and then
prepare another Raman channel to interfere, and find
that only one sideband is enough to give rise to bista-
bility. When we increase the sideband Rabi frequency,
bistability is switched to tristability. When a sideband si-
multaneously couples with both transitions, two Λ-type
two-photon resonance Raman channels interfere with
each other and quadrastability is easily obtained.

The Λ-type system we consider here is shown in
Fig. 1(a), which consists of an excited state and two
lower states, denoted by |3〉, |2〉, and |1〉, respectively.
A control field Ece

−iωct + c.c. and its sideband field
E1e

−i(ωc−δ)t + c.c. are applied to the |2〉↔|3〉 tran-
sition. Meanwhile, a probe field Epe−iωpt + c.c. and

its sideband (another control field) E2e
−i(ωp−δ)t + c.c.

are coupled to |1〉↔|3〉 transition. For these fields,
Ei (i=c, 1, 2, and p) are the amplitudes of vari-
ous field components; ωc, ωc − δ, ωp, and ωp − δ
are the corresponding frequencies; δ is the frequency
difference between the sideband and the control or

Fig. 1. (a) Three-level Λ-type atom interacting with two co-
herent fields ωp (the probe field) and ωc (the control field),
and two sideband control fields (ωc − δ and ωp − δ) respec-
tively coupling with two transitions. γ1 and γ2 are the atomic
decay rates. (b) Three-level Λ-type atom interacting with ωp

and ωc.
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probe field. A three-level Λ-type system interacting with
a control field and a probe field is shown in Fig. 1(b).
In Fig. 1, ∆1 = ω31 − ωp and ∆2 = ω32 − ωc are the
detunings of the probe field and the control field from
the corresponding transitions, γ1 and γ2 are the atomic

decay rates. Ωi = ~µ23·Ei

h̄
(i=c, 1), and Ωj =

~µ13·Ej

h̄
(j=p,

2) denote Rabi frequencies associated with the respective
fields, in which ~µ23 and ~µ13 are the atomic transition elec-
tric dipole moments. Under the dipole interaction and
rotating wave approximation, the density matrix equa-
tions are

ρ̇33 = −(γ1 + γ2)ρ33 −
iΩp

2
(ρ31 − ρ13)

− iΩ2

2
(ρ31e

−iδt − ρ13e
iδt) − iΩc

2
(ρ32 − ρ23)

− iΩ1

2
(ρ32e

−iδt − ρ23e
iδt),

ρ̇11 = γ1ρ33 −
iΩp

2
(ρ13

− ρ31) −
iΩ2

2
(ρ13e

iδt − ρ31e
−iδt),

˙ρ31 = −
(

γ1 + γ2

2
+ i∆1

)

ρ31

− i(Ωp + Ω2e
iδt)

2
(ρ33 − ρ11)

+
i(Ωc + Ω1e

iδt)

2
ρ21, (1)

˙ρ32 = −
(

γ1 + γ2

2
+ i∆2

)

ρ32 +
i(Ωp + Ω2e

iδt)

2
ρ12

− i(Ωc + Ω1e
iδt)ρ33 −

i(Ωc + Ω1e
iδt)

2
ρ11

+
i(Ωc + Ω1e

iδt)

2
,

˙ρ21 = i(∆2 − ∆1)ρ21 −
i(Ωp + Ω2e

iδt)

2
ρ23

+
i(Ωc + Ω1e

−iδt)

2
ρ31.

The above equations are constrained by ρ00+ρ11+ρ22 = 1

and ρ∗ij = ρji. Expanding ρij as ρij=
∑l=∞

l=−∞
ρ
(l)
ij e−ilδt

(i,j=1,2,3) and using matrix inversion technique[17], the

steady-state solutions ρ
(l)
ij (i,j=1,2,3) can be obtained.

In what follows, we put the ensemble of N homoge-
neously broadened Λ-type atoms in a unidirectional ring
cavity (see Fig. 2). For simplicity, We assume that mir-
rors M3 and M4 have 100% reflectivity, and the intensity
reflection and transmission coefficient of mirrors M1 and
M2 are R and T (with R+T=1), respectively.

The Maxwell’s equation under slowly varying envelope
approximation is[18]

∂Ep

∂t
+ c

∂Ep

∂z
= i

ωp

2ε0
P(ωp), (2)

where c is the light velocity in vacuum, P(ωp) is the
slowly oscillating term of the induced polarization in the

Fig. 2. Unidirectional ring cavity with an atomic sample of
length L, whose configuration is shown in Fig. 1(a). EI

p and

ET
p are the incident and transmitted fields, respectively. The

control fields Ec, E1, and E2 do not circulate in the cavity.

transition |1〉 ↔ |3〉 and is given by

P(ωp) = Nµ13ρ
(0)
31 , (3)

where ρ
(0)
31 is the steady-state solution of Eq. (1) which

corresponds to the term oscillating at frequency ωp.
Considering the field in the steady-state and setting

the time derivative in Eq. (2) to zero, we can obtain the
field amplitude as

∂Ep

∂z
= i

Nωpµ13ρ
(0)
31

2cε0
. (4)

For a perfectly tuned cavity, in the steady-state limit,
the boundary conditions between the incident field EI

p

and the transmitted field ET
p are

Ep(L) = ET
p /

√
T, (5)

Ep(0) =
√

TEI
p + REp(L), (6)

where L is the length of the the atomic sample. The sec-
ond term on the right-hand side of Eq. (6) describes a
feedback mechanism due to the mirror, which is essential
to give rise to bistability, namely, there will be no bista-
bility if R = 0.

In the mean-field limit, using the boundary conditions
and normalizing the fields by setting y = µ13E

I
p/(h̄

√
T),

x = µ13E
T
p /(h̄

√
T), we can get the input-output relation-

ship as

y = x + Cγ1Im(ρ
(0)
31 ) − iCγ1Re(ρ

(0)
31 ), (7)

where C = αL/2T is the cooperation parameter, and
α = 4πωpµ

2
13/h̄cγ1. The second and third terms on the

right-hand side of Eq. (7) are vital for the occurrence of
bistability.

In the following, we choose the parameters to be di-
mensionless units by scaling with γ and let γ = 1 to
evolve numerical calculations.

It is easy to see from Eqs. (1) and (7) that the input-
output relationship is determined by the atomic decay
rates γ1 and γ2, the cooperation parameter C, Rabi fre-
quencies (Ωc, Ω1, Ω2), and frequency detunings (δ, ∆1,
∆2). We consider here C = 2000, γ1 = γ2 = 1, ∆1 = ∆2,
and plot input-output curves for different parameter
values in Figs. 3 and 4. In the absence of sidebands,
for the situation ∆1 = ∆2, the detunings of the probe
and control fields from corresponding atomic transitions
are equal. Thus two-photon resonance will result in the
trapping of the atoms in the dark state and EIT, namely,



August 10, 2009 / Vol. 7, No. 8 / CHINESE OPTICS LETTERS 661

Fig. 3. Input-output relation. (a) Dotted, dashed, and solid
lines respectively correspond to Ω1 = 0, 1, and 7. Other
parameters are δ = 5, ∆1 = ∆2 = 0, Ωc = 10, Ω2 = 0. (b)
Dashed and solid lines respectively correspond to Ωc = 10,
Ω1 = 7 and Ωc = 20, Ω1 = 14. Other parameters are same
as those in (a). (c) Dashed and solid lines respectively cor-
respond to Ω2 = 2 and 6. Other parameters are δ = −5,
∆1 = ∆2 = 5, Ωc = 10, Ω1 = 0.

Fig. 4. Input-output relation for parameters Ω1 = Ω2 = 7
(dashed line), Ω1 = Ω2 = 10 (solid line) and δ = −5,
∆1 = ∆2 = 5, Ωc = 10.

Im(ρ
(0)
31 ) = Re(ρ

(0)
31 ) = 0. It is seen from Eq. (7) that the

input-output relation is linear and bistability is impossi-

ble, as shown in Fig. 3(a).
Then we apply a sideband on one of the atomic transi-

tions and focus on the behavior of bistability due to two-
channel interference effect spoiling EIT. Firstly, setting
detunings ∆1 = ∆2 = 0, the control Rabi frequencies
Ωc = 10, Ω2 = 0, and the difference of the sideband E1

from the control field δ = 5, we plot the transmitted light
versus incident light for the different sideband Rabi fre-
quencies Ω1 = 1 and 7 in Fig. 3(a), i.e., the sideband is
added to couple with the transition |2〉 ↔ |3〉. It is seen
that the appearance of the sideband (Ω1 = 1 in com-
parison with Ω1 = 0) disturbs the two-photon resonance
and induces bistability. Moreover, increasing the side-
band Rabi frequency from 1 to 7 induces optical tristabil-
ity. That means, changing the sideband Rabi frequency
can lead to switching from bistability to tristability. In
Fig. 3(b), simultaneously increasing the control Rabi fre-
quency and the sideband Rabi frequency from Ωc = 10
and Ω1 = 7 to Ωc = 20 and Ω1 = 14, we can see that
the threshold intensity of hysteresis cycle is obviously de-
creased. Secondly, applying a sideband to the other tran-
sition |1〉 ↔ |3〉 and setting ∆1 = ∆2 = 5, the control
Rabi frequencies Ωc = 10, Ω1 = 0, the difference of the
sideband E2 from the probe field δ = −5, we plot the
transmitted light versus incident light for the different
sideband Rabi frequencies Ω2 = 2 and 6 in Fig. 3(c).
The similar results as in Fig. 3(a) are obtained that the
sideband interferes with the two-photon resonance and
induces bistability and tristability. We note that two-
photon Raman coupling is responsible for normal EIT
in the Λ system which is coupled by a control field and
a probe field as shown in Fig. 1(b). There exists only
one Raman channel |1〉−→ωp

|3〉−→ωc
|2〉. EIT is induced if the

detunings are equal, i.e., ∆1 = ∆2, and a dark state is
created[19]. When a sideband is added to couple with
either transition, another Raman channel |1〉−→ωp

|3〉−−−→
ωc−δ

|2〉
or |1〉−−−→

ωp−δ
|3〉−→ωc

|2〉 is opened and interferes with the orig-

inal channel |1〉−→ωp
|3〉−→ωc

|2〉. This destructive interference
will suppress the light absorption and EIT. Increasing
the sideband intensity gives rise to stronger destructive
interference. As a result, bistability and tristability oc-
cur.

We also consider the case when both transitions are
coupled by a sideband. Setting ∆1 = ∆2 = 5, the control
Rabi frequency Ωc = 10, the difference of two sidebands
from the control and the probe fields δ = −5, we plot
the input-output relationship for the sideband Rabi fre-
quencies Ω1 = Ω2 = 7 and 10 in Fig. 4. From this figure,
we can see that respectively coupling an additional side-
band with both transitions can easily give rise to multi-
stability. Increasing the sideband Rabi frequencies from
Ω1 = Ω2 = 7 to 10, we can switch quadrastability to pen-
tastability. At the same time, the threshold intensity is
decreased, that is favorable for experimental realization.

In conclusion, we investigate the optical bistability and
multistability behaviors in a closed three-level Λ-type
atomic system by introducing a sideband on either hand
of the transitions which are originally coupled by a coher-
ent control field and a coherent probe field. Increasing
the sideband Rabi frequency leads to the switching from
bistability to tristability due to two-Raman-channel in-
terference. When the sideband simultaneously couples
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with both transitions, quadrastability and pentastability
can be obtained favorably.
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